Bulk Particle Production A Global View

Gunther Roland

Bulk Properties

Single Au+Au Collision **O(10⁴) 4-Vectors**

How many Parameters needed to describe average collision?

Provide background (5 - 15% accuracy) against which we can search for structure

Global Observables

"Global Observables" need to be understood in context

Control Parameters

Also: Different systems (different nuclei, pp, pA, e+e-)

Bulk Properties

I. Particle Density near Mid-Rapidity

How does Density at 90° change with Energy and Centrality?

Particle Density near Mid-Rapidity

Beware of the Jacobian!

$$dN/d\eta = <\beta > dN/dy$$

Particle Density near Mid-Rapidity

Logarithmic Rise with Collision Energy

Particle Density near Mid-Rapidity

"Coherence" of Hardon Production

Centrality Dependence at $|\eta|$ < 1

Surprising Lack of Energy Dependence

II. 4- π Multiplicity $\langle N_{ch} \rangle$

How does Integral over 4- π , <N_{ch}>, change with Energy and Centrality?

$\langle N_{ch} \rangle$ vs N_{part} in d+Au

d+Au Multiplicity proportional to p+p Multiplicity * N_{part}

$\langle N_{ch} \rangle$ vs N_{part} in Au+Au

III. Shape of dN/dη Distributions

How does Shape of dN/dη (dN/dy) change with Energy?

Reaching the Central Plateau?

Boost-invariance?

Landau Hydrodynamics

Carruthers, Duong-Van on pp data in 1973:

surprisingly well described by Landau's energy-dependent Gaussian rapidity distribution [see Eq. (2.1) for the definition of y]

$$\frac{1}{\sigma_{in}} \frac{d\sigma}{dy} = \frac{dN}{dy}$$
= $N \exp(-y^2/2L)/(2\pi L)^{1/2}$, (1.5)

where the parameter L is

$$L = \frac{1}{2} \ln(s/4m_{p}^{2}), \qquad (1.6)$$

where s is the squared total c.m. energy.

<N_{ch}> vs sqrt(s) revisited

Secondly, we wish to stress that as a function of available energy $W_{\rm had}$ the hadronic multiplicity varies as $N \approx 2.2~W_{\rm had}^{1/2}$ over a vast range of initial energies.²⁵

Carruthers, Duong-Van on pp and e⁺e⁻ data in 1983:

IV. Spectrum of Produced Hadrons

Hagedorn, Becattini, Braun-Munzinger, Cleymans, Letessier, Mekijan, Rafelski, Redlich, Stachel, Tounsi

Spectrum of Produced Hadrons

$$\langle n_j \rangle = \frac{(2J_j + 1)V}{(2\pi)^3} \int d^3p \left[e^{\sqrt{p^2 + m_j^2}/T + \mu \cdot \mathbf{q}_j/T} \pm 1 \right]^{-1}$$

"Thermal Fit" Parameters vs sqrt(s)

V. Transverse Dynamics

Structure in Inverse Slope vs sqrt(s)

Summary

- Data can indeed by reduced efficiently
 - We're doing Thermodynamics!
- Total Multiplicity
 - Proportional to N_{part}
 - Rises like s^{1/4} from mid-SPS Energy Range
- π dN/dy Distributions
 - Single Gaussian with width $\sigma^2 \sim 0.5 \ln(s/4m_p)$
- Statistical Fits describe Hadron Abundances
 - Systematic Evolution, Limiting Temperature
- Correspondence with other 'Hadronic' Systems
 - p+p, p+A, e+e-
- Max Entropy Evolution from Dense Initial State
 - How is the Initial State Prepared?
 - Baryon Number Transport?

Coincidence?

This is a cartoon! (so far)

Particle Ratios in d+Au: p/p vs Centrality

Constant p/p ratio vs centrality

Disagreement with expectations/models

N_{part} scaling?

Rapidity Distributions at 200 GeV

PHOBOS QM'02, Steinberg

e⁺e⁻ measures dN/dy_T (rapidity relative to "thrust" axis)

Surprising agreement in shape between AA/e+e-/pp

Correspondence between perturbative and non-perturbative approaches?

Transverse Energy near η=0

- dE_T/dη exhibits smooth rise vs sqrt(s)
- Surprisingly, $\langle E_T \rangle$ per particle at $\eta = 0$ constant

even though p+p spectra get much harder with sqrt(s)

Transverse Energy near η=0

Net Proton dN/dy

Transverse Energy vs N_{part}

dE_T/dη and <pT> independent of N_{part} above N_{part} ~50

Boost-invariance?

